HOW TO MANAGE QUALITY PROBLEMS AND COMPLAINTS IN TRANSFUSION MEDICINE?

Tomislav Vuk, MD, PhD
Croatian Institute of Transfusion Medicine
Zagreb, Croatia

Antalya, 2019
Special place of transfusion medicine in medical science:

- complex algorithms of donor selection and testing
- variability of the initial material and final products
- specific risks associated with their use
- many inter-connected segments
- numerous participants
- laboratory medicine, clinical medicine, pharmaceutical-like production
- patients and blood donors
• great responsibility of transfusion services to provide accessible and safe transfusion therapy
• tremendous progress in terms of quality and safety in transfusion medicine
• most of the activities in transfusion chain take place without any problems
• some risks are still present
• the biological origin of blood products
 - transfusion-transmissible infections
 - immune-mediated transfusion reactions
• complexity, numerous participants in transfusion chain
 - errors

Importance of implementing a QMS in transfusion medicine was early recognized.
• 1991 - France
• unexpected or undesirable effects of transfusion treatment (blood safety concept)
• the scope of haemovigilance has evolved
• entire transfusion chain ("vein to vein")
• HV = risk monitoring system
• HV = quality process
• full integration of haemovigilance in the quality management system
ROLE AND IMPORTANCE OF QM/HV

- QM and HV: activities continuously intertwined
- joint goals of high quality, safe and efficacious transfusion treatment
- proper functioning of all activities in the entire process of transfusion medicine
- continuous monitoring
- CAPA
- improvement
PREVENTIVE APPROACH

- preventive approach
 - preventing things from getting badly
 - when things go badly - preventing and mitigating damage by a correct and rapid response

Preventive strategies:
- comprehensive risk management
- education
- definition of critical control points
- permanent quality monitoring and vigilance
- audits
- identification of opportunities, etc.
• quality – responsibility of all employees
• team work and cooperation

• knowledge and professional competence
• human qualities

• structured protocol
• each decision should be properly documented
DECISION MAKING

• process of choosing among different action options (alternatives)
• intuition vs. reasoning
• knowledge, experience, facts, relevant information

• difficulties on making decisions:
 - complex problems
 - situations when we feel uncertainty
 - lacking or inadequate data
 - serious consequences of decisions
COMMUNICATION

• inappropriate communication = misunderstandings and conflicts
• written and verbal communication skills
• two-way process
• ability of active listening
• transfer of information and education
• effective problem solving
• better management of conflict situations
• the skill of written communication:
 - responding to complaints
 - making complaints
TEAM WORK

- important tool in achieving common goals
- the scope of tasks to cover is steadily increasing and growing ever more complex

“None of us is as smart as all of us”
Japanese proverb

"Coming together is a beginning; keeping together is progress; working together is success."
Henry Ford
CAUSES OF QUALITY PROBLEMS

Blood banks
quality problems are often manifested on blood products
• biological origin of blood products
• human errors
• poor quality of materials and equipment used in product realization
• suboptimal planning and organization of work

Hospital transfusion units
problems are most commonly related to pre-transfusion testing
• errors in pre-analytical phase
• selection or issue of blood components for transfusion

Clinical transfusion practice
• many activities that are not directly under the jurisdiction of BTS
• BTS can affect them through hospital transfusion committees, education of clinical staff, and so on
BLOOD COLLECTION

- special place and role in the transfusion chain
- many critical sites influencing the quality of blood components
- skill and experience of the technicians
- collection failures - considerable economic loss for blood collecting institutions
 - reputation of the blood establishment
 - donor motivation
BLOOD COLLECTION

“Overall data suggest that optimal initial education of staff members performing blood collection should take 5-6 months, while taking into account that up to one year is needed to acquire desired skill and experience.”
Venipuncture failures (CITM)
- failed insertion of the needle into the vein
- interrupted collection (hematoma, poor/absent flow, donor reaction...)

Croatian Institute of Transfusion Medicine – 2017 data

IMPORTANT QUALITY INDICATOR!
VENIPUNCTURE FAILURES – CITM 1998-2017

%
Croatian Institute of Transfusion Medicine (CITM)
Zagreb, Croatia
Year: 2017
269 PDI

During donation (blood withdrawal) or immediately after

EARLY
58 (21.6%)
Infections/contact: 27 (46.6%)

After donation but before next donation/attendance

LATE
211 (78.4%)

Subsequent donation(s)

Tattoo/piercing: 50 (23.7%)
Surgical procedures: 48 (22.7%)
Travel: 41 (19.4%)
Endoscopy: 31 (14.7%)
Infections/contact: 8 (3.8%)
Other medical conditions: 33 (15.6%)
• risk assessment
 - quality/safety of blood components
 - safety of blood donors
• cooperation with HBB and clinicians
 - recall
 - look-back
• cooperation with fractionators
 - contracts
• counseling blood donors
 - further donations
• education
 - blood donors
 - staff
OUTDATED BLOOD COMPONENTS

- BC - valuable resource
- responsible management
- careful planning of blood collection
- stock management
- low discard rate: savings, better allocation of resources

Figure: Outdated PLT concentrates
CITM 1998-2017
LIPEMIC PLASMA

CITM – lipemic FFP for clinical use 1998-2017

Corrective actions
- donor factors
- testing problems
- product loss
MANAGEMENT OF NONCONFORMING QC RESULTS (SPC)

Nonconforming QC result(s) → Initial investigation → Decision on BC(s)

- Accidental process variation
- System problem

Accidental process variation or System problem → Root cause analysis → Corrective action
Repeat testing according to quality protocol

- e.g. in QC
- (influence on the result?)

Exceptional circumstances - properly explained and documented

- product recall
- donor counseling
- repair of the equipment
- staff re-education
- testing of other components
• causes
• influence on other products from the same donation
• influence on blood products from other donations of the donor
• influence on the other blood components from the same “batch”
BC NONCONFORMITY - INVESTIGATION

Depends on the type of the nonconformity

Donor-related factors
- CBC parameters (HGB, WBC, PLT...)
- lipemia
- protein content
- other laboratory findings

Collection/processing/storage
- length of blood withdrawal
- flow
 - venipuncture technique (technician)
 - veins
- apheresis procedure; alarms and messages
- filtration time, separation time
- storage conditions
BC NONCONFORMITY - INVESTIGATION

Equipment
• HGB determination system
• blood mixers
• sealers/SCD
• apheresis machines
• blood centrifuges and separators
• refrigerators/freezers...

Materials
• blood bags
• filters
• solutions
• labels/adhesives...

Human errors
ERRORS IN TRANSFUSION MEDICINE

• one of the leading causes of morbidity and mortality associated with transfusion therapy
• may have disastrous consequences for the patients
• frequently of multifactor nature

• danger of serious/fatal outcomes
• cost of lost products
CAUSES OF ERRORS

- inexperienced staff
- lack of staff
- lack of knowledge
- complexity of procedures
- inappropriate design of equipment and procedures
- poor communication
- poor co-ordination
- improper documentation
- stress
- distractions...

Even well trained individuals are at risk of making serious errors while working in poorly designed systems (Singh H et al. Qual Saf Health Care. 2006)
INVESTIGATION OF ERRORS/EVENTS

- systematic, comprehensive, efficient

Data collection

Classification Analysis

CA/PA

Quality improvement

Uniform

Formal protocol (e.g. MERS-TM)
Responsible professionals
Focus on system-based issues
Risk assessment
SHOT/MHRA

SHOT - 2018
• 3326 total reports
• 2905 errors = 87.3%
• 1667 no harm (1451 near miss + 216 right blood right patient)

MHRA - 2018
• 1606 reports
• 408 SAR
• 1198 SAE (98.3% human errors)

MHRA = Medicines and Healthcare products Regulatory Agency

EC. Summary of the 2017 annual reporting of serious adverse reactions and events for blood and blood components (data collected from 01/01/2016 to 31/12/2016)

Ref. Ares(2019)1077383 - 21/02/2019
ERROR PREVENTION

• establishment of such an organizational structure and working environment where recognized errors can be reported without fear
• the use of simple, clear and intelligible documentation
• initial and continuous education
• defining critical sites in the work process and intensified surveillance of these sites
ERROR PREVENTION

- use of SOPs
- clear rules and policies
- systematic analysis of nonconformities, errors, complaints, and implementation of corrective and preventive measures
- internal audits
- automation and computerization
- checklists
- duplicate checks
- suggestions to be more careful – low potential
In addition to already mentioned preventive measures:

• avoidance of unnecessary transfusions
• identifications bracelets
• radiofrequency ID systems
• fingerprint sensors
• palm vein scanning technology
• blood testing at bedside
• double grouping
• transfusion registry
• careful monitoring of the recipient
• Haemovigilance systems
ERROR MONITORING

- important quality indicator
- trend analysis
- quality objectives
- UCL (upper control limit)

Error monitoring: example CITM
COMPLAINT MANAGEMENT

• some products and services fail to meet the customer requirements/expectations, in spite of:
 - maximal institution commitment to quality
 - optimal results of internal quality measurements
• efficient complaint management provides valuable information on:
 - customer satisfaction
 - perception of the product and service quality
• precondition for undertaking appropriate CAPA and continuous quality improvement
• tool for continuous quality harmonization with customer requirements and expectations
• clearly defined
• described in a document defining:
 - the course of activities
 - the persons responsible for their performance
COMPLAINT MANAGEMENT

• complaint receipt
• complaint processing (analysis)
 - justifiability
 - risk level
• informing the complainant on the activities performed and results obtained
• implementation of corrective/preventive actions
• periodical statistical analysis of data produced by the procedures of complaint management
• monitoring efficiency of the corrective actions undertaken for complaints
COLLABORATION WITH CUSTOMERS

- partnership
- good communication
- proposals, suggestions, needs
- important in the process of complaint management
COMPLAINT MANAGEMENT

DOMAIN project:
• system of donor complaint management has been established in the majority of transfusion institutions
• the number of complaints received varies considerably among institutions
 - waiting time
 - inappropriate staff communication
 - donor deferral
 - technique of venipuncture

Northern Ireland Blood Transfusion Service
• annual 2017 report
• 17 formal complaints out of 54954 donations
• Scottish National BTS – donors
• around 204,000 donors
• 97 complaints per 100,000 attendances at blood donation services
• 281 complaints (total) in 2008/09 (peak)
• 231 complaints in 2011/12
 - donor selection/health and safety
 - donor communications
 - staff attitudes and behavior
 - waiting times
COMPLAINT MANAGEMENT

- Croatian Institute of Transfusion Medicine (CITM)
- 13-year period (1998-2010)
- ~ 1 million donations
- ~ 2.5 million blood components
- laboratory testing performed in 600,000 patients
- 817 complaints

Complaint Management – Croatian Experience

CITM 1998-2010

<table>
<thead>
<tr>
<th>Complaint category</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive direct antiglobulin test (DAT) in RBC products</td>
<td>334</td>
<td>40.9</td>
</tr>
<tr>
<td>Blood product distribution/issuing</td>
<td>105</td>
<td>12.9</td>
</tr>
<tr>
<td>Blood product quality</td>
<td>77</td>
<td>9.4</td>
</tr>
<tr>
<td>Laboratory test findings</td>
<td>69</td>
<td>8.4</td>
</tr>
<tr>
<td>Blood product labeling</td>
<td>59</td>
<td>7.2</td>
</tr>
<tr>
<td>Bacterial contamination of blood product suspected</td>
<td>48</td>
<td>5.9</td>
</tr>
<tr>
<td>Transfusion virus transmission suspected</td>
<td>31</td>
<td>3.8</td>
</tr>
<tr>
<td>Providing service to donors</td>
<td>21</td>
<td>2.6</td>
</tr>
<tr>
<td>Providing service to patients</td>
<td>20</td>
<td>2.4</td>
</tr>
<tr>
<td>Other</td>
<td>53</td>
<td>6.5</td>
</tr>
<tr>
<td>Total</td>
<td>817</td>
<td>100.0</td>
</tr>
</tbody>
</table>
PRODUCT RECALL - CHARACTERISTICS

- efficient system
- timely recall
- products that are known or suspected of being nonconforming
- questionable quality and/or safety
- complete traceability throughout the transfusion chain
PRODUCT RECALL

- as soon as possible
- at any time

- written procedure
 - all activities
 - degree of responsibility of each individual involved
 - harmonized with the existing professional standards and legal provisions
PRODUCT RECALL - REASONS

• PDI (donor risks)
• aberration from the prescribed product/service quality detected upon issuing
• results of donor testing may suggest possible risk of issued blood components
• reported AE/AR pointing to nonconformity of other products from the same donation/batch;
• user's complaint;
• when requested by inspection or respective regulatory bodies...
PRODUCT RECALL - FREQUENCY

- relatively frequent in transfusion medicine
 - biological origin of blood products
 - specific risks associated with their use
 - not all risks can be predicted, some of them cannot be prevented

- 1/700 units available to hospitals (1990-1997) – Ramsey & Sherman 1999
- 1/2,000 units in US in the late 1990s (Ramsey G, 2004)
- 1/250 BC involved in market withdrawals and quarantines, 1/5800 formally recalled (Ramsey G, 2014)
Recall initiated by suppliers

Recall of:
- equipment
- reagents
- other incoming materials

Procedure:
- written instructions
- responsible persons
- etc...
NONCONFORMITIES OF MATERIALS AND EQUIPMENT

- timely detection, labeling and separation (putting out of use) of nonconforming materials/equipment
- assessment of the effect of nonconforming materials/equipment on product and service quality
- properly documented
- supplier/manufacturer should be contacted
- whenever possible, defective incoming material should be sent to the manufacturer
- report to the CA/regulatory bodies as appropriate
- evaluation and selection of manufacturers
- good collaboration with the manufacturers
CONCLUSIONS

• timely detection of quality problems
• comprehensive analysis and risk assessment
• structured protocol
• properly documented
• monitoring trends
• implementation of corrective/preventive actions
• quality improvement
• continuous process
• team work
THANK YOU!